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Introduction: It is widely assumed that ferroan
anorthosites (FANSs) formed as flotation cumulates on a
global lunar magma ocean (LMO). A corollary is that
all FANs are approximately contemporaneous and
formed with the same initial ***Nd"**Nd ratio. Indeed,
a whole rock isochron for selected FANs (and An93
anorthosite [1]) yields an isochron age of 4.42+0.13 Ga
and initial ***Nd/***Nd, expressed in -units, of exg crur
= 0.320.3 relative to the CHondritic Uniform Reservoir
[2], or engnepps =-0.6%0.3 relative to the HED Parent
Body [3]. These values are in good agreement with the
age (T) = 4.47+0.07 Ga, and €Nd,HEDPB =-0.6+0.5 for
FAN 67075 [4,5]. We also have studied anorthositic
clasts in the Dhofar 908 and 489 lunar highland mete-
orites containing clasts of magnesian anorthosites
(MAN) with Mg# ~75 [6]. Because of their relatively
high Mg#, magnesian anorthosites should have pre-
ceded most FANSs in crystallization from the LMO if
both are LMO products. Thus, it is important to deter-
mine whether the Nd-isotopic data of MAN and FAN
are consistent with a co-magmatic origin. We previous-
ly reported Sm-Nd data for white clast Dho 908 WC
[7]. Mafic minerals in this clast were too small to be
physically separated for an isochron. However, we
estimated initial “*Nd/***Nd for the clast by combining
its bulk (“whole rock”) Sm-Nd data with an **Ar-Ar
age of 4.42+0.04 Ga. Here we report additional Sm-Nd
data for bulk samples of Dho 908 and its pair Dho 489.
Sm-Nd data for Dho 908 clast and 908/489 matrix:

The new data for bulk matrix and leached samples
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Fig. 1. Sm-Nd data for subsamples of Dho 908 and 489
compared to an ~4.4 Ga reference isochron determined
for FAN 67075 [4] and anorthositic clasts in Y86032.

of Dho 908 and 489 are shown in Fig. 1. The samples
contain lithic and mineral fragments including olivines
and orthopyroxenes with Mg# in the range ~75 to ~85,
in addition to plagioclase fragments. With the assump-
tion that these are fragments from co-magmatic anor-
thosites and troctolites, the residues after leaching de-
fine an isochron for an age, T = 4.36+0.07 Ga and gy,
neops = +0.6+0.2. These values are compared to those
for lunar anorthositic rocks (Fig. 2).

Variable (T,eng) among lunar anorthosites:
Values of (T, eng) for lunar anorthosites as determined
in our lab show both “nominal” and “anomalous” cha-
racteristics. “Nominal” characteristics can easily be
ascribed to Nd-isotopic evolution in the LMO prior to
anorthosite crystallization, assuming closure of the Sm-
Nd system can be delayed until ~100-150 Ma after
formation of the earliest solar system solids. Here we
define nominal characteristics as those given by the
parameters of the 67075 internal isochron [4] in Fig. 2
(yellow triangle). Internal isochron data for several
other lunar anorthosites (60025, Y-86032, 67215) are
consistent with these nominal parameters. Moreover,
the T = 4.42+0.13 Ga whole rock isochron for 10
FANSs also are in agreement. These data define a uni-
quely lunar reference datum, but one for a later time
than usually assumed for planetary “initial” isotopic
paramaters. However, there also are a number of lunar
anorthosites yielding “anomalous” (T, gyg) parameters.
The customary interpretation of such data is that they
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Fig. 2. (T, eng) diagram for lunar anorthositic rocks
including troctolite 76335. The location of the Dho
908 WC anorthositic clast is shown for its *Ar-*°Ar
age and also for assumed “isochrons” with bulk rock
samples after leaching, and with also with samples of
anorthositic clast Y86032,133W[1].



require “source regions” with compositions varying
from LREE-depleted, as for 62236, to LREE-enriched
as for the Y86032,116 GC. (T, eng) of Dho 908WC
also appears to be “anomalous” by ~1 g-unit at a given
age relative to the nominal value. Moroever, this ap-
pears to be a common lunar feature shared by the
Y86032,133 “white clast” [1] as well as by the trocto-
litic components of the Dho 908 and 489 matrices. We
attribute these features to troctolitic anorthosites poorly
represented among the Apollo anorthosites.

Occurence of troctolitic anorthosites: Troctolites
per se are relatively rare among large samples of the
Apollo collection, but olivine grains and grain frag-
ments frequently occur in the matrices of lunar high-
land meteorites as well as in Apollo highland breccias.
Fig. 3 characterizes some ANT (anorthosite, norite,
troctolite) suite samples in terms of their plagioclase,
olivine and pyroxene compositions using the summary
compilation in the Lunar Sample Compendium [8].
Troctolite 76535, norite 78235, and anorthosite15415
define end-member compositions for the plotted sam-
ples. 76335, 67075, and 62237 have higher plagioc-
lase abundances and higher olivine/pyroxene ratios
than 76535; essentially troctolitic anorthosite composi-
tions. The large plagioclase grain size of the Apollo
anorthosites in comparison to the areas of typical po-
lished thin sections (PTSs), plus the rarity of mafic
minerals in the anorthosites make determining the maf-
ic mineral abundances and the ol/px ratio very uncer-
tain for them. However, mafic minerals, and in particu-
lar, olivine, has been observed in the PTSs of several.
These observations correspond to our experience with
some samples of lunar highlands meteorites, notably
the Dho 489 family and Y-86032.

Also plotted in Fig. 3 are the compositions of cen-
tral peaks of several large lunar craters from the compi-
lation of [9]. Among five crater central peaks that are
particularly anorthite-rich (data encircled), two have
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Fig. 3. Olivine and pyroxene abundances for lunar
anorthositic samples and crater central peaks [9].

olivine enriched over pyroxene, and one (Keeler) has a
composition nearly identical to that of 76335, etc. We
use Clementine data [9] instead of the higher spatial
resolution Kaguya data [10] to show “average” peak
compositions. The Kaguya authors emphasized the
presence of “purest anorthosite” (PAN) in their central
peak data, for example, of the Jackson central peak
[10]. Their data show an impact melt cap on the Jack-
son central peak containing ~10-20% opx. Without the
impact melt cap, the Jackson datum (open blue square
in Fig. 3) moves to the ~98% plagioclase composition
of 15415 [10]. Similar considerations probably apply
to other central peak compositions.

¥Ar-“Ar ages: Apollo vs. lunar meteorites:
®Ar-“Ar ages of ~4.26 Ga were obtained both for the
MAN clast in Dho 489 [6], and for a matrix sample of
paired Dho 908 [7]. This age likely dates a major im-
pact event, probably on the lunar farside. Highland
meteorites seem to have retained somewhat older ages
than Apollo ANT suite rocks (Fig. 4).

Concluding remark: J. Meyer et al. [11] argue
that evolution of the lunar eccentricity and inclination
could have led to tidal heating and prolonged thermal
effects in the initial lunar anorthositic crust. This work
may provide a promising context in which to evaluate
the “anomalous” (T, eng) Values of some anorthosites.
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Fig. 4. Ar-Ar ages of lunar highland samples.
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